Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-(2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate

H. S. Naveenkumar,^a Amirin Sadikun,^a‡ Pazilah Ibrahim,^a Madhukar Hemamalini^b and Hoong-Kun Fun^{b*}§

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 5 May 2010; accepted 10 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.059; wR factor = 0.170; data-to-parameter ratio = 24.1.

The title compound, C₂₀H₁₇N₃O₂·CH₄O·H₂O, was synthesized by the condensation reaction of 2-benzyloxybenzaldehyde with isoniazid (isonicotinic acid hydrazide). The tricyclic compound displays a trans configuration with respect to the C=N double bond. The central benzene ring makes dihedral angles of 8.83 (7) and 70.39 $(8)^{\circ}$ with the pyridine ring and the terminal benzene ring, respectively. The dihedral angle between the pyridine ring and the terminal benzene ring is $73.11 (8)^{\circ}$. In the crystal structure, molecules are connected by intermolecular N-H···O, O-H···O, O-H···(N,N) and C-H···O hydrogen bonds, forming a two-dimensional network perpendicular to the *a* axis.

Related literature

For applications of isoniazid derivatives, see: Janin, 2007; Maccari et al. (2005); Slayden & Barry (2000). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar et al. (2010a, 2010b, 2010c). For the synthesis of isoniazid derivatives, see: Lourenco et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crvstal data

C₂₀H₁₇N₃O₂·CH₄O·H₂O $M_r = 381.42$ Monoclinic, $P2_1/c$ a = 17.763 (3) Å b = 12.3888 (18) Åc = 8.7450 (13) Å $\beta = 98.672 \ (3)^{\circ}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min}=0.968,\;T_{\rm max}=0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.170$ S = 1.006515 reflections 270 parameters

$\mu = 0.09 \text{ mm}^{-1}$	
T = 100 K	
$0.35 \times 0.18 \times 0.09 \text{ mm}$	

V = 1902.4 (5) Å³

Mo $K\alpha$ radiation

Z = 4

24474 measured reflections 6515 independent reflections 4012 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.069$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O1^{m}$ 0.93 2.48 3.229 (2) 137	$N2-H1N2\cdots O3 O3-H1O3\cdots O1W O1W-H1W1\cdots O1^{i} O1W-H1W1\cdots N3^{i} O1W-H2W1\cdots N1^{ii} C1-H1A\cdots O3_{m}$	0.91 (2) 0.87 (3) 0.80 (3) 0.80 (3) 0.87 (3) 0.93	2.06 (2) 1.85 (3) 2.11 (3) 2.62 (3) 2.05 (3) 2.27	2.9549 (18) 2.7165 (19) 2.8713 (18) 3.2119 (19) 2.898 (2) 3.189 (2)	169.9 (16) 174 (3) 160 (2) 133 (2) 163 (2) 169
	$C2 - H2A \cdots O1^{m}$	0.93	2.48	3.229 (2)	137

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/ PFARMASI/671157). HSNK is grateful to Universiti Sains Malaysia for a USM-fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/

[‡] Additional correspondence author, e-mail: amirin@usm.my. § Thomson Reuters ResearcherID: A-3561-2009.

811012. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2796).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.

- Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). *Eur. J. Med. Chem.* 43, 1344–1347.
- Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010c). Acta Cryst. E66, 01202–01203.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.
- Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235–o1236.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1337-o1338 [doi:10.1107/S1600536810016958]

(E)-N'-(2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate

H. S. Naveenkumar, A. Sadikun, P. Ibrahim, M. Hemamalini and H.-K. Fun

Comment

Isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari *et al.*, 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa *et al.*, 1986). We have recently reported the crystal structures of (E)-N'-[(E)-3-(4-hydroxy- 3-methoxyphenyl)allylidene]isonicotinohydrazide (Naveenkumar *et al.*, 2010*a*), (E)-N'-(2,4,5-trimethoxybenzylidene)isonicotinohydrazide dihydrate (Naveenkumar *et al.*, 2010*b*) and (E)-N'- (2,4,6-trihydroxybenzylidene)isonicotinohydrazide sesquihydrate (Naveenkumar *et al.*, 2010*c*). As a part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound, (I), Fig.1.

In (I), the molecular structure of the compound displays a trans configuration with respect to the C=N double bond. The central benzene (C8–C13) ring makes dihedral angles of 8.83 (7)° and 70.39 (8)° with the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring, respectively. The dihedral angle between the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring is 73.11 (8)°.

In the crystal packing (Fig. 2), molecules are connected by N2—H1N2···O3, O3—H1O3···O1W, O1W—H1W1···O1, O1W—H1W1···N3, O1W—H2W1···N1, C1—H1A···O3 and C2—H2A···O1 (Table 1) hydrogen bonds.

Experimental

This isoniazid derivative was prepared by a literature procedure (Lourenco *et al.*, 2008) involving the reaction between the 2-benzyloxybenzaldehyde (1.0 eq) and isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 hours at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and diethyl ether, afforded the pure derivative. Colorless single crystals suitable for X-ray analysis were obtained by recrystal-ization from methanol.

Refinement

Atoms H1N2, H1O3, H1W1 and H2W1 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C-H = 0.93-0.97 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonding (dashed lines) network.

(E)-N'-(2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate

F(000) = 808

 $\theta = 2.3 - 30.0^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Plate, colourless $0.35 \times 0.18 \times 0.09 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.332 \ {\rm Mg \ m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3013 reflections

Crystal data $C_{20}H_{17}N_3O_2$ ·CH₄O·H₂O $M_r = 381.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.763 (3) Å b = 12.3888 (18) Å c = 8.7450 (13) Å $\beta = 98.672$ (3)° V = 1902.4 (5) Å³ Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	6515 independent reflections
Radiation source: fine-focus sealed tube	4012 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.069$
ϕ and ω scans	$\theta_{\text{max}} = 32.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2009)	$h = -26 \rightarrow 26$
$T_{\min} = 0.968, T_{\max} = 0.992$	$k = -17 \rightarrow 18$
24474 measured reflections	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.170$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0887P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6515 reflections	$(\Delta/\sigma)_{max} < 0.001$
270 parameters	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.12066 (6)	0.05407 (9)	0.36337 (14)	0.0250 (3)
O2	0.36364 (6)	0.37324 (8)	0.80611 (13)	0.0211 (2)
N1	-0.05513 (8)	0.28776 (12)	0.00600 (16)	0.0258 (3)
N2	0.17041 (7)	0.21885 (11)	0.43066 (15)	0.0194 (3)
N3	0.22141 (7)	0.17181 (10)	0.54646 (15)	0.0196 (3)
C1	0.04882 (9)	0.31412 (13)	0.2126 (2)	0.0241 (3)
H1A	0.0791	0.3622	0.2765	0.029*
C2	-0.00980 (9)	0.35168 (14)	0.1031 (2)	0.0270 (4)
H2A	-0.0181	0.4258	0.0966	0.032*
C3	-0.04163 (10)	0.18181 (14)	0.0186 (2)	0.0284 (4)
H3A	-0.0721	0.1356	-0.0480	0.034*
C4	0.01531 (9)	0.13683 (13)	0.1257 (2)	0.0256 (3)
H4A	0.0223	0.0624	0.1304	0.031*
C5	0.06174 (8)	0.20416 (12)	0.22571 (17)	0.0191 (3)
C6	0.12010 (8)	0.15226 (12)	0.34544 (18)	0.0194 (3)
C7	0.26917 (8)	0.23667 (12)	0.62477 (18)	0.0192 (3)
H7A	0.2676	0.3101	0.6022	0.023*
C8	0.32580 (8)	0.19465 (12)	0.74905 (17)	0.0176 (3)
C9	0.33274 (8)	0.08431 (12)	0.78078 (18)	0.0200 (3)
H9A	0.3004	0.0360	0.7218	0.024*
C10	0.38701 (9)	0.04540 (12)	0.89869 (19)	0.0216 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10A	0.3906	-0.0282	0.9193	0.026*
C11	0.43586 (8)	0.11734 (13)	0.98564 (19)	0.0216 (3)
H11A	0.4724	0.0914	1.0644	0.026*
C12	0.43089 (8)	0.22761 (12)	0.95664 (18)	0.0198 (3)
H12A	0.4644	0.2751	1.0145	0.024*
C13	0.37506 (8)	0.26656 (11)	0.83943 (17)	0.0179 (3)
C14	0.40996 (9)	0.45051 (12)	0.90037 (19)	0.0212 (3)
H14A	0.4624	0.4457	0.8825	0.025*
H14B	0.4084	0.4369	1.0091	0.025*
C15	0.37824 (9)	0.55991 (12)	0.85576 (17)	0.0201 (3)
C16	0.41662 (9)	0.63173 (13)	0.77156 (19)	0.0240 (3)
H16A	0.4638	0.6129	0.7455	0.029*
C17	0.38469 (10)	0.73098 (13)	0.7266 (2)	0.0291 (4)
H17A	0.4104	0.7784	0.6702	0.035*
C18	0.31456 (10)	0.75978 (13)	0.7654 (2)	0.0287 (4)
H18A	0.2932	0.8263	0.7349	0.034*
C19	0.27639 (10)	0.68912 (14)	0.8500 (2)	0.0278 (4)
H19A	0.2295	0.7086	0.8768	0.033*
C20	0.30781 (9)	0.58952 (13)	0.89466 (19)	0.0245 (3)
H20A	0.2818	0.5423	0.9508	0.029*
O3	0.17234 (7)	0.45730 (9)	0.42445 (15)	0.0268 (3)
C21	0.21264 (10)	0.52275 (14)	0.5437 (2)	0.0269 (3)
H21A	0.2657	0.5039	0.5583	0.040*
H21B	0.1926	0.5110	0.6383	0.040*
H21C	0.2068	0.5974	0.5149	0.040*
O1W	0.16524 (7)	0.56017 (11)	0.14832 (15)	0.0261 (3)
H1N2	0.1707 (11)	0.2913 (16)	0.416 (2)	0.027 (5)*
H1O3	0.1722 (13)	0.4936 (19)	0.339 (3)	0.051 (7)*
H1W1	0.1606 (14)	0.518 (2)	0.079 (3)	0.052 (7)*
H2W1	0.1375 (15)	0.616 (2)	0.115 (3)	0.056 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0287 (6)	0.0175 (5)	0.0262 (6)	-0.0017 (4)	-0.0046 (5)	0.0026 (5)
O2	0.0244 (5)	0.0139 (5)	0.0223 (5)	-0.0010 (4)	-0.0054 (4)	-0.0011 (4)
N1	0.0228 (6)	0.0274 (7)	0.0257 (7)	0.0022 (5)	-0.0009 (6)	0.0010 (6)
N2	0.0213 (6)	0.0161 (6)	0.0187 (6)	-0.0002 (5)	-0.0032 (5)	0.0025 (5)
N3	0.0188 (6)	0.0188 (6)	0.0199 (6)	0.0012 (4)	-0.0016 (5)	0.0024 (5)
C1	0.0232 (7)	0.0209 (7)	0.0259 (8)	-0.0017 (6)	-0.0038 (6)	-0.0008 (7)
C2	0.0259 (8)	0.0224 (8)	0.0309 (9)	0.0036 (6)	-0.0012 (7)	0.0024 (7)
C3	0.0274 (8)	0.0283 (9)	0.0259 (8)	-0.0019 (6)	-0.0078 (7)	-0.0013 (7)
C4	0.0275 (8)	0.0196 (8)	0.0269 (8)	-0.0007 (6)	-0.0045 (7)	-0.0009 (7)
C5	0.0181 (6)	0.0209 (7)	0.0179 (7)	-0.0005 (5)	0.0012 (6)	0.0020 (6)
C6	0.0203 (7)	0.0200 (7)	0.0173 (7)	-0.0019 (5)	0.0011 (6)	0.0000 (6)
C7	0.0207 (7)	0.0156 (7)	0.0202 (7)	-0.0008 (5)	-0.0008 (6)	0.0008 (6)
C8	0.0181 (6)	0.0165 (7)	0.0177 (7)	0.0006 (5)	0.0005 (5)	0.0012 (6)
C9	0.0205 (7)	0.0174 (7)	0.0213 (7)	-0.0007 (5)	0.0006 (6)	-0.0015 (6)

C10	0.0231 (7)	0.0163 (7)	0.0249 (8)	0.0022 (5)	0.0020 (6)	0.0035 (6)
C11	0.0195 (7)	0.0233 (8)	0.0208 (7)	0.0039 (5)	-0.0006 (6)	0.0025 (6)
C12	0.0178 (6)	0.0209 (7)	0.0195 (7)	0.0003 (5)	-0.0010 (6)	-0.0012 (6)
C13	0.0197 (6)	0.0152 (7)	0.0190 (7)	0.0011 (5)	0.0032 (6)	-0.0001 (6)
C14	0.0225 (7)	0.0170 (7)	0.0222 (7)	-0.0024 (5)	-0.0032 (6)	-0.0014 (6)
C15	0.0252 (7)	0.0170 (7)	0.0165 (7)	-0.0015 (5)	-0.0022 (6)	-0.0019 (6)
C16	0.0245 (7)	0.0228 (8)	0.0234 (8)	-0.0026 (6)	-0.0003 (6)	-0.0005 (7)
C17	0.0339 (9)	0.0220 (8)	0.0294 (9)	-0.0054 (6)	-0.0013 (7)	0.0039 (7)
C18	0.0361 (9)	0.0174 (8)	0.0294 (9)	0.0018 (6)	-0.0053 (8)	-0.0013 (7)
C19	0.0300 (8)	0.0251 (8)	0.0270 (8)	0.0051 (6)	0.0003 (7)	-0.0035 (7)
C20	0.0291 (8)	0.0222 (8)	0.0220 (8)	-0.0002 (6)	0.0032 (7)	-0.0003 (7)
O3	0.0307 (6)	0.0224 (6)	0.0244 (6)	-0.0056 (4)	-0.0052 (5)	0.0018 (5)
C21	0.0288 (8)	0.0243 (8)	0.0262 (8)	-0.0023 (6)	0.0000 (7)	-0.0033 (7)
O1W	0.0298 (6)	0.0224 (6)	0.0231 (6)	0.0033 (5)	-0.0058(5)	-0.0012 (5)

Geometric parameters (Å, °)

O1—C6	1.2263 (18)	C11—C12	1.390 (2)
O2—C13	1.3619 (17)	C11—H11A	0.9300
O2—C14	1.4382 (18)	C12—C13	1.400 (2)
N1—C3	1.336 (2)	C12—H12A	0.9300
N1—C2	1.338 (2)	C14—C15	1.497 (2)
N2—C6	1.3542 (19)	C14—H14A	0.9700
N2—N3	1.3817 (18)	C14—H14B	0.9700
N2—H1N2	0.91 (2)	C15—C20	1.394 (2)
N3—C7	1.2881 (19)	C15—C16	1.397 (2)
C1—C5	1.383 (2)	C16—C17	1.386 (2)
C1—C2	1.385 (2)	C16—H16A	0.9300
C1—H1A	0.9300	C17—C18	1.386 (3)
C2—H2A	0.9300	C17—H17A	0.9300
C3—C4	1.387 (2)	C18—C19	1.387 (2)
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C5	1.387 (2)	C19—C20	1.386 (2)
C4—H4A	0.9300	C19—H19A	0.9300
C5—C6	1.502 (2)	C20—H20A	0.9300
С7—С8	1.461 (2)	O3—C21	1.426 (2)
С7—Н7А	0.9300	O3—H1O3	0.88 (2)
C8—C9	1.397 (2)	C21—H21A	0.9600
C8—C13	1.406 (2)	C21—H21B	0.9600
C9—C10	1.388 (2)	C21—H21C	0.9600
С9—Н9А	0.9300	O1W—H1W1	0.80 (3)
C10—C11	1.388 (2)	O1W—H2W1	0.88 (3)
C10—H10A	0.9300		
C13—O2—C14	117.99 (12)	C11—C12—C13	119.40 (14)
C3—N1—C2	116.47 (15)	C11—C12—H12A	120.3
C6—N2—N3	116.85 (13)	C13—C12—H12A	120.3
C6—N2—H1N2	123.0 (12)	O2—C13—C12	123.87 (14)
N3—N2—H1N2	120.1 (12)	O2—C13—C8	115.77 (13)
C7—N3—N2	115.66 (13)	C12—C13—C8	120.35 (13)

C5—C1—C2	119.11 (15)	O2—C14—C15	107.03 (12)
С5—С1—Н1А	120.4	O2—C14—H14A	110.3
C2—C1—H1A	120.4	C15—C14—H14A	110.3
N1—C2—C1	123.90 (15)	O2-C14-H14B	110.3
N1—C2—H2A	118.0	C15—C14—H14B	110.3
C1—C2—H2A	118.0	H14A—C14—H14B	108.6
N1—C3—C4	123.64 (16)	C20-C15-C16	119.24 (14)
N1—C3—H3A	118.2	C20-C15-C14	119.41 (14)
С4—С3—Н3А	118.2	C16—C15—C14	121.32 (14)
C5—C4—C3	119.19 (15)	C17—C16—C15	120.22 (15)
C5—C4—H4A	120.4	C17—C16—H16A	119.9
С3—С4—Н4А	120.4	C15-C16-H16A	119.9
C1—C5—C4	117.68 (14)	C16—C17—C18	120.22 (16)
C1—C5—C6	124.60 (14)	С16—С17—Н17А	119.9
C4—C5—C6	117.66 (14)	C18—C17—H17A	119.9
O1—C6—N2	122.82 (14)	C17—C18—C19	119.84 (15)
O1—C6—C5	120.34 (14)	C17—C18—H18A	120.1
N2—C6—C5	116.84 (13)	C19—C18—H18A	120.1
N3—C7—C8	119.84 (13)	C20-C19-C18	120.24 (16)
N3—C7—H7A	120.1	C20—C19—H19A	119.9
С8—С7—Н7А	120.1	C18—C19—H19A	119.9
C9—C8—C13	118.68 (13)	C19—C20—C15	120.24 (15)
C9—C8—C7	121.79 (13)	C19—C20—H20A	119.9
C13—C8—C7	119.53 (13)	C15—C20—H20A	119.9
C10—C9—C8	121.22 (14)	С21—О3—Н1О3	105.8 (16)
С10—С9—Н9А	119.4	O3—C21—H21A	109.5
С8—С9—Н9А	119.4	O3—C21—H21B	109.5
C9—C10—C11	119.40 (14)	H21A—C21—H21B	109.5
С9—С10—Н10А	120.3	O3—C21—H21C	109.5
C11-C10-H10A	120.3	H21A—C21—H21C	109.5
C10-C11-C12	120.93 (14)	H21B-C21-H21C	109.5
C10-C11-H11A	119.5	H1W1—O1W—H2W1	107 (2)
C12-C11-H11A	119.5		
C6—N2—N3—C7	179.30 (13)	C9—C10—C11—C12	0.3 (2)
C3—N1—C2—C1	0.1 (2)	C10-C11-C12-C13	0.9 (2)
C5-C1-C2-N1	-0.8 (3)	C14—O2—C13—C12	-2.2 (2)
C2—N1—C3—C4	0.5 (2)	C14—O2—C13—C8	176.90 (12)
N1—C3—C4—C5	-0.4 (3)	C11—C12—C13—O2	177.34 (13)
C2—C1—C5—C4	0.9 (2)	C11—C12—C13—C8	-1.7 (2)
C2—C1—C5—C6	-176.15 (14)	C9—C8—C13—O2	-177.83 (12)
C3—C4—C5—C1	-0.3 (2)	C7—C8—C13—O2	2.38 (19)
C3—C4—C5—C6	176.90 (14)	C9—C8—C13—C12	1.3 (2)
N3—N2—C6—O1	-3.1 (2)	C7—C8—C13—C12	-178.47 (13)
N3—N2—C6—C5	176.55 (12)	C13—O2—C14—C15	-171.52 (12)
C1—C5—C6—O1	169.54 (15)	O2—C14—C15—C20	69.93 (18)
C4—C5—C6—O1	-7.5 (2)	O2—C14—C15—C16	-107.99 (16)
C1—C5—C6—N2	-10.1 (2)	C20-C15-C16-C17	-0.4 (2)
C4—C5—C6—N2	172.90 (14)	C14—C15—C16—C17	177.56 (15)
N2—N3—C7—C8	-179.56 (12)	C15-C16-C17-C18	0.2 (3)

N3—C7—C8—C9	3.6 (2)	C16—C17—C18—C19		0.2 (3)
N3—C7—C8—C13	-176.60 (13)	C17—C18—C19—C20		-0.5 (3)
C13—C8—C9—C10	-0.1 (2)	C18—C19—C20—C15		0.4 (3)
C7—C8—C9—C10	179.69 (14)	C16—C15—C20—C19		0.1 (2)
C8—C9—C10—C11	-0.7 (2)	C14—C15—C20—C19		-177.91 (15)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H1N2…O3	0.91 (2)	2.06 (2)	2.9549 (18)	169.9 (16)
O3—H1O3…O1W	0.87 (3)	1.85 (3)	2.7165 (19)	174 (3)
O1W—H1W1···O1 ⁱ	0.80 (3)	2.11 (3)	2.8713 (18)	160 (2)
O1W—H1W1···N3 ⁱ	0.80 (3)	2.62 (3)	3.2119 (19)	133 (2)
O1W—H2W1…N1 ⁱⁱ	0.87 (3)	2.05 (3)	2.898 (2)	163 (2)
C1—H1A…O3	0.93	2.27	3.189 (2)	169.
C2—H2A…O1 ⁱⁱⁱ	0.93	2.48	3.229 (2)	137.

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, -y+1, -z; (iii) -x, y+1/2, -z+1/2.

Fig. 2